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ABSTRACT

/ :

This paper 1s concerned with two sensitivity
analysis problems on a network each arc of which
is subject to one or to more than one reduction
in its length. Suppose that a total number of

s reductions can occur on the whole network.
The two problems are the following:

(1) Which arc should be reduced such that
the shortest route from source to any node 1 1is
reduced the most? i

(11) Which arcs should be reduced such that
the sum of all the shortest routes between each
pair of nodes is reduced the most?

In (1) we generalize Dantzig's algorithm councerning
the shortest route from source to sink in a graph.
In (i1) we generalize Dantzig's algorithm con-
cerning the shortest routes between each pair of
ncdes in a directed graph.
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CHAPTER 1

INTRODUCT 10N

The purpose of this paper is to solve several sensitivity analysis problems
in networks.

A network is defined by a set of nodes i , a set of arcs (iu,iv) ard a
set of distances d(iu,iv) . The arcs are subject to one or to several reductions
of their length. The problem consists in determining on which arcs the reductions
should occur such that the shortest route is reduced the most.

In Part II, we consider this problem for the shortest route from source to

any node in a graph. Two cases have to be considered:

- Each arc is subject to only one reduction, the total number of reductions
being s .
- Each arc 1s subject to more than'one reduction, say m , the total number

of reductions being s .

As an application of Part II, we indicate in the appendix the equivalence
of this problem with the following sensitivity analysis on a maximum flow problem:
The capacity of which arcs should be reduced such that the maximum flow from

source to sink is reduced the most? We have considered three cases:

- The one-commodity flow problem for a planar graph.
- The two-commodity flow problem for an undirected graph.

- The multi-commodity flow problem for a completely planar graph.

Part III deals with the same sensitivity analysis problem corresponding to
the sum of all the shortest routes between each pair of nodes in a graph.

For each part an algorithm to solve the problem is given and short applications
referring to transportation problems are indicated.

Since a reduction of the length of an arc can be considered as an improvement

on this arc, we will use, in the iollowing, these two words indifferently.




CHAPTER II

SHORTEST ROUTE FROM SOURCE TO ANY NODE IN THE GRAPH

II.1 Introduction

PR

Consider a network ({N,A} , N being a set of nodes, A being a set of

i arcs. To each arc corresponds a length, There is the shortest path problem
from source to any node in the graph. Suppose that the distance of each arc
(iu,iv) can be reduced m times. The improvement problem is the following:

On which arcs should a total number of s improvements occur such that the
shortest route from the source to a certain node i in the graph is reduced the
most? Several papers have alreadv dealt with this problem, especially two by

Richard Wollmer (Ref. 8,9). In (8) he considers the case where only one reduction

;* e can occur on each arc, and the remaiping length is equal to zero. In (9) he
considers the same case, but the remaining length can be any nonnegative number.

This paper considers the possibility of more than one reduction on each arc,

and the remaining lengths can take any nonnegative value.
Using several special network properties, the following algorithm provides
the means for assessing very large numbers of transportation projects and

project combinations without going through the usual complete traffic assignment

e s (i o

b process. It is capable of evaluating a large number of network alternatives in
the same amount of time it would take to evaluate a single alternative using
- standard procedures and still obtain the same information at a comparable level

: of detail.

I1.2 Formulation of the Problem

Let {N,A} be a network. N is a finite nonempty set of nodes i . A
is a set of ordered pairs (iu’iv) of distinct nodes; each such pair is called

an arc. Let n be the number of nodes in N and a the number of arcs in A .




One node in the network is distinguished: node S called source. A path in

the network from S to node 1w 1s a sequence of nodes:

P(S,iw) = S,il,iz, aod iw—l’iw 3
such that

(Sail)’(iltiz)a LA (iw_laiw) € A .

Consider 3 function d which attributes to each arc (1u,1v) a nonnegative
number d(iu,iv) . Depending on the application this number represents the
length, the cost, the time or the risk involved 1in traversing the arc (1u,1v) .
If the arc (iu,iv) does not exist, put d(iu,iv) = o , Whatever it stands
for, we call in the following d(iu,iv) the length of the arc (iu,iv) . The
length of a path is defined by:

w
d(e(s,i )] = ] d(1_;,1) with i =s.
t=1
Consider now a function b which attributes to each arc (iu,iv) a set
o 1
of nonnegative numbers b(iu,iv) . Let b (iu,iv),b (iu,iv), oI bm(iu,iv) be

the elements of this set with:
o 1 m
b (1u,1v) = d(iu,iv) > b (1u,iv) > ... >b (1u,iv) >0

for all the arcs (1 ,1 ) .
u’’v
m , the number of possible improvements, is not necessarily the same for
each arc. It can take the values 0,1, ..., s 1if s 1s the total number of
improvements on the whole network.
a
When Fhe length of arc (1u,iv) passes from d(iu,iv) to b (1u,1v) with

ae{1,2, ..., m}, we say that the arc iu,iv) has been improved or reduced by

Ay




] the quantity d(iu,iv) - bu(iu,iv) » and the reduced length or the improved
_ o
length of arc (iu,iv) is b (iu,iv) .
Suppose a total number of s improvements can occur on the whole network.
If an arc is subject to only one improvement, we assume that the reduced length
;: is bl(iu,iv) . If an arc is subject to more than one improvement, we assume

that the successive improvements are:
blet ,1) b L,1)
U’V’ so0y U’V .

The improvement problem is the following: On which arcs should the s
improvements occur such that the length of the shortest route from source to
a certain node i is reduced the most? The following algorithm provides us

with the solution for all the nodes 1 of the graph.

11.3 Algorithm )

a) One improvement can occur on each arc. The total number of

improvements is s .
The first part provides us with the reduced length of the shortest path
from S to any node i and with the corresponding arc improvements, but not

with the shortest paths themselves. The second part will give us these paths.

First Part:

Since each arc is subject to only one improvement, the reduced length
is bl(iu,iv) for arc (iu,iv) c
The algorithm {s based on a double multi-stage decision process solved
by dynamic programming methods. It is developed in s successive steps
(s being the total number of improvements that can occur on the whole network),
Step r providing us with the lengths of the shortest routes from the source to

any node i when r improvements occur and giving us the corresponding

o B

B




improvements. Furthermore, each step is by itcelf a multi-ssage decision
process; it is developed Iin n successive stages (n being the total number

of nodes in the graph), each stage giving us the length of the shortest route

from the source to a certain node i and the corresponding arc improvements.

The algorithm consists in a generalization of Dantzig's algorithm for the

shortest route problem in a network. (Ref. 2)
Notation:

- d(iu’iv) = initial length of arc (iu,iv) .
1
- b (iu,iv) = improved length of arc (iu,iv) .

For each step we define a labelling function which attributes to each
node i a nonnegative value representing the length of the shortest
path from source to node 1 . ?or Step r the labelling function Vr(i)
represents the length of the shortest path from source to node 1

when at most r improvements occur.

- Nt = get of nodes labelled in Step r after Stage k.

= Nr = complementary set of Nt .

Algorithm:

Step 0O:

Shortest route without any improvement. (Dantzig's algorithm.)

- Stage 0: Suppose VO(S) = 0 . The function Vo is, therefore, defined

B T

on the set Ng = {8} .

gt

- Stage 1: Find the node i(m) which is at the shortest distance from the

source S . The node i(m) is defined by: !

S

i i




Vo[i(m)] = migo [d(S,iy)] .

i eN
y o

Define N = N° U 1(m)
() () *

k-1

~ Stage k: Suppose we have defined the function V, on a set N°

of % nodes. Define the node i(m) by:

Voli(m)] = pin [Vo(ix) + d(ix,iy)]

i eNk-l
x 0
1 en<t
y o
+, k-1 =k-1
(1x’iy) € cut (N° ,No ) .

k-1

befine Nt = No Ui(m) .

Go to Step 1 when all the nodes are labelled, i.e., when k =n .

Step 1:
Shortest route with one improvement.
- Stage 0: Suppose VJ(S) =0 Ng = (S},

- Stage 1: Find the node 1i(m) which is at the shortest improved distance

from the source S . Define the node i(m) by:

v,[1@)] = nin [bl(s,iy)] .

=0
iyeNl

+A cut (X,X) 1is a set of arcs (1u.1v) such that iu eX, iy eX, X and
I being a partition of the nodes.
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1 o
Define N1 = NllU 1(m) .

- Stage k: The function V1 is defined on a set Ng-l of k nodes.

Define the node 1i(m) by:

V@] = ain VA +dEL10,0,G0 + b))

k-1
ixeNl

i sﬁF-l
y 1

k-1 =k-1
(ix,iy) € cut (N1 ,hl ) .

Define N‘l‘ = N‘l"l U i(m) .

Go to Step 2 when k =n .

Step r:

Shortest route with r <improvements.

- Stage 0: Suppose Vr(S) =0 N: = {s} .

- Stage k: The function Vr is defined on the set N:-l of k nodes.

Define node 1i(m) by:

V@] = min [ + AW 10,0 () + b, 1))
k-1
(1.0,

i sﬁk-l
y r

k-1 =k-1
(ix,iy) € cut (Nr ,Nr ) .

Define Nk = Nk-l U i(m) .
r r




DU

Whoen k=n stop if r = s . Otherwise go to Step r + 1.

Remark:

1) If at any stage the determination of i(m) 1is not unique, choose
arbitrarily one determination.
- 1
2) If the arc (iu,iv) does not exist d(iu,iv) =o . If b (iu,iv)
exists, i.e., if bl(iu,iv) ¢ @ ; and if this arc is improved for a certain
node, say ie , that means that we add to the original set of arcs A a new

arc (iu'iv) with length bl(iu.iv) and tha* this arc belongs to the

shortest route from source to node ic .

Second Part:

The previous algorithm provides us with the length of the shortest route
from source § to any node 1 and with the ccrresponding arc improvements. Let
us see ﬁow how to find the different shortest paths themselves.

Consider Step s, Stage k. Let Ps[i(m)] denote the shortest path from
S to node i(m) when s improvewents occur. Depending on which arc the last

improvement occurs, the definition of Ps[i(m)] is different:

k-1
- If Vs[i(m)] - Vs(ix) + d[ix,i(m)] 1 eN

, the last arc of the
path Ps[i(m)] is not improved but the improvement occur all before.
Define Ps[i(m)] = Ps(ix) Ui(m) .

- If Vs[i(m)] = Vs_l(ix) + bl[ix,i(m)] ix £ N:-l » the last improvement

occurs on arc [ix,i(m)] and the other improvements occured before.

Define Ps[i(m)] = Ps_l(ix) Ui(m) .

- 1If Ps[i(m)] is not determined uniquely, choose arbitrarily ome

determination.

Each step provides us with a tree. Let us call Ts the tree corresponding

to Step s. The tree To gives also the shortest paths from S to any node 1 .




-
]

=

wopm ey

But for the other trees this is not necessarily true.

Consider the successive trees To’Tl’ 000q Ts . From the first part of the

algorithm we know on which arcs the improvements occur. Suppose that the last
improvement is on (ia’iB) . It belongs necessarily to Ts « In order to find
the shortest path Ps(i) , trace back from i to 1, on the tree '1'8 . From
i1 trace back on Ts—l until you reach another improved arc, etc... till you
reach § .

If we call P;(ix,iy) the path from ix to iy or the tree Tr ; and

if the first improvement occurs on arc (iy’ie) , we have:

PU) =P (1) URL( 1) = B UB (L, ) Uees BL Gy 1) U PI(E,)

1€

Example:

In order to know at the end on which arc the improvement occurred, we
indicate it on each label. Fror instance, Vl[i s (ie,if)] means: the length
of the shorlest route from source to node i when one improvement occurs is

Vl(i) , and the improvement occurs on arc (ie,if) . On each arc we indicate

the initial and the reduced distance: [d(iu,iv) s bl(iu,iv)] .

(22,12)

(9,7) /) (14,10)

{
_\.|

(10,8)

(14,13) (17,12)

T RS
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)]

(21, (6,7)]
k- FIGURE 1: No Improvement FIGURE 2: One Improvement
To - — T, =—

Let us find now the shortest paths: For node 5 the improvement occurs on

the arc (2,5) . Hence, follow the tree Tl till node 2 and then T° till

;'_ 5. So P(S)=S5,2,5.

For node 7 the improvement is on the arc (6,7) . Foilow T1 till

node 6 , then follow To till S . So P1(7) = P°(6) U7=585,2,3,6,7.

b) m_improvements can occur on each arc  (m > 1) . The total number

of improvements is s .

First Part:

The first improvement on arc (iu,iv) leads to the ruduced length bl(iu,iv) 5
The m-th improvement leads to the reduced length bm(iu,iv) . As previously,
the algorithm is developed in s successive steps, Step r providing us with the

‘ minimal paths corresponding to a total number of most = improvemenﬁs and giving




.-'
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us the arcs on which these improvement occur.

Notation:

The same as in Part a. bl(iu,iv), oD O bm(iu,iv) are the successive

improved lengths of arc (iu,iv) o

Algorithm:
Step O:

Shortest route without any improvement. Same as in Section a.

Step 1:

Shortest route with one improvement. Same as in Section a.

Step r:

.

(r > 1) shortest route with r improvements.

- Stage 0: Suppose Vr(S) =0 N: = {s}

- Stage k: The function Vr is defined on the set Nt-l of k nodes.

Define i(m) by: 1if r < m :

V@I = mie V(L) 4@, L V() + bl(ix,iy),

k-1 r
ixeN Vo(ix) +b (ix,iy)]

=k-1
iyeNr

k-1 -k-1
((ix’iy) € cut (Nr ’Nr )

if ¢ >m:

ham‘ e 1




b
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V@) = min (VL) 4401 L V() + bl(ix,iy),...,

k-1 m
1 N Vo (1) +?b (ix,iy)

eﬁk-l

i
y r

k-1 —k-1,
(ix’iy) € cut (Nr ,Nr )

or condensed in one expression:

V@) = win V) + a1 L Va4 bl(ix,iy),...,

k-1

min(r,m)
ixENr vr-min(r,m)(ix) &b (ix’iy)]

1 efic!
y r

k-1 -k-1
(ix,iy) € cut (Nr ,Nr ) .

Second Part:

In the same way as in Section a we determine the shortest path from §S

to 1 . But now more than one improvement can occur on each arc. Thus if:

k-1

VI1@] =V _ (1) + b4 ,1@] 1 e NS, ¢t < min(s,m)

t dimprovements occur on arc [ix,i(m)] and (s-t) occurred before. Define
P'[i(m)] - Ps-t(ix) U i(m).. Consider now the successive trees

To,Tl, 0 Yok Ta « Suppose that the last improvement occurred on (ia’iB) and
that there was only one improvement on that arc. It belongs necessarily to 'I‘s .
As in Section a, in order to find the shortest path, trace back from i to 1,

on the tree T. . From 1 trace back on Ts_1 until you reach another improved

arc, etc. till you reach § .




13

More generally, suppose we follow the tree TqﬂO < q < 8) ; and we encounter
an arc improved o times, say arc (ia’ip) » (@ < min(q,m)) . Add this arc to
Ps(i) and switch to the tree Tq-a . Suppose the first improvement is on arc
(iy’ie) -and that there is only one improvement on this arc. If we call P'(1 ,1)

rx’y
the path from ix to iy on the tree Tr , we have:

Y b T U P , .
Psu) Po(iy) U Pl(iy,...) Uu...up

M CPRE IO VR SN TS

| |
TRPRRT G SN s T T N T Dl

Example:

8 =m=2. In order to know at the end on which arcs the improvements
occurred, we indicate it on each label. V2[i s (ie,if) 3 (ig,ih)] means that
the length of the shortest route from source to node i , when two improvements
occur is Vz(i) and that one improvement occurs on arc (ie,if) and the other
on arc (ig,ih) p Vz[i(ie,if)z] means that both improvements occur on arc
(ie,if) . On each arc we indicate the initial and the improved lengths:

1 2
[4(,1) , b (1,1 , b2 ,1)] .

(8,5,4)

(10,7,7) (17,12,11)

ity




22

FIGURE 1: No Improvement

(1,(5,3)]

2
(13, (2,5)7]
‘FIGURE 2: One Improvement FIGURE 3: Two improvements

T, = — T = —

"1 "2
The ghortest path from S to 7 is:
P2(7) - PO(Z) U Pé(2,7) = (5,1,2) U (5,7) =S ,1,2,5,7.

The two improvements occur on arc (2,5) .
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I1.4 Application

Consider a transportation network between two towns. A certain amount
of money is available to improve the network, i.e., to decrease the distance or
the travel time of several arcs. The improvement problem can be formulated 1like
this: How should this money be spent or which arc lengths should be reduced

such that the shortest route between the two towns is reduced the most?

e it vt et e

[ S N
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CHAPTER III

SBORTEST ROUTE BETWEEN EACH PATIR OF NODES IN A GRAPH

IIT.1 Definition of the Froblem

The length of the shortest route is sought between every pair of nodes
in a directed graph (N,A) . Let {1,2, ..., n} be the set of nodes in the
graph and let a be the number ¢f arcs. To each arc corresponds a set of

nonnegative numbers: d(i,j) > bl(i,j) > vhe 3 bm(i,j) >0 . d(i,}) 1is the

initial length of arc (i,j) 1f it exists. bl(i,j), ceey bm(i,j) are the
lengths after the consecutive improvements in this order. If the arc (i,j)
does not exist, put d(i,j) =~ , Put d(i,i) = 0 for all i . The fixed
oumbzz 1 of possible improvements is not necessarily the same for each arc.
Suppose s improvements can occur on the whole network? The improvement
E‘ problem is the following: Which arcs should be improved such that the sum of

all the shortest routes between each pair of nodes is reduced the most?

! 111.2 Algorithm

Dantzig's algorithm to find the length of all the shortest routes between
each pair of noder in a directed graph is well known. (Ref. 3,) Normally, to
find the best improvements, we should apply Dantzig's algorithm as many times as
there are possible combinations of improvements. For example, if r 1is the
number of arcs and if s 1s greater than m for all the arcs, we would have
('+:-1) possibls solutions to compare. Obviously, this leads to too many
computations.

In order to reduce the number of matrices to be computed, we consider the

consecutive nodes in the following order: Take node 1 . Then take the next
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node in the set {2, ..., n} such that no loop* is created between this node

‘and node 1 . Go un in avoiding as long as -possible to form a loop. If it is

no longer possible to avoid it and if there is a choice between two nodes, take
the node which creates the smallest number of loops. Go on until all the nodes
have been considered.

The way in which the algorithm works will show the obvious advantage of
this procedure.

We consider two cases:

- Each arc can be improved once.

- Each arc can be improved m times. (m > 1) .

a) Each arc can be improved once. The total number of improvements is

s . bl(i,j) is the improved distance of arc (1,3j) .

Notation:

- a pxp matrix is a square matrix with p columns and p rows.

i

.3
- (W, ¢ 7F

is the matrix corresponding to the improvement on arc
(1a’j8) . This improvement is obtained by finding the shortest improved

route from 1 to j

- ((ar’n(i,j))) is the matrix of the lengths of the shortest routes between
each pair of nodes when “he r improvements occur which make the sum of

these lengths the shortest.

= ar’k(i,j) is the length of the shortest route from i to Jj at Stage k

when r improvements occur.

+A loop is a sequence of arcs (ul,uz, 000 ut) , whatever the direction of

these arcs may be, eacl arc u, being connected to arc w1 by one of its

k
extremities and to u by the other. Furthermore Uy and u

k+1 join at the

t

same node.
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ar’k(i,j) is the set of the lengths of the shortest routes between
i and J corresponding to the new improvements introduced by Stage k

when a total number of r improvements occur.

- Br'k(i,j) is the set of the lengths of the shortest routes between 1
and j corresponding to each improvement considered in Stage k when a

total number of r improvements occur.
- N 1is the set of k nodes for which the problem is solved.

= ﬁk is the complementary set of Nk :

Algorithm:

The algorithm is developed in s steps, Step r providing us with the
solution corresponding to r improvements. Suppose that the consecutive nodes

are in the following order: 1,2, ..., n .
Step O:
Find the matrix ((ao’n(i,j))) of the lengths of the shortest routes
between each pair of nodes without any improvement. (Dantzig's algorithm.)
1
- tage 1l: N = {1}
2
- Stage 2: N° = {1,2}
a%2(1,2) = 4,2 a%:2(2,1) = 4(2,1)

- Stage k: Nk = {1,2, ..., k}

Assume that for the first k -1 nodes 1, ..., k - 1 the optimal distances

ao’k_l(i,j) are known. These nodes form the set Nk-l . Add a node k and

find the optimal distances for the nodes 1, ..., k.




For 1 =1, ..., k-1 the shortest route from k to 1 is:

ao’k(k,i) = min{d (k,j) + ao’k-1

G, 3=1, ..., k-1 . The minimal route
from k to 1 starts with some arc (k,j) followed by a minimal route from
3 to 1 that does not go through k . The minimum of these alternatives is

the solution.

O,k-l

a%%(4,k) = min[a (1,) +dG,K] §=1, .., k-1 .

The minimal route ends with an arc (J,k) preceded by a minimal route from
i to J that does not go through k . The minimum of these alternatives is

the solution.

For 1i=1, ..., k-1 and j =1, ..., k-1

a%%(1, 1) = n1nl2¥5 (1,9, a®%@,0 + a %K a1 .

The entries in the (k - 1)x(k - 1) matrix ao’k-l

(1,j) are replaced by
[ao’k(i,k) + ao’k(k,j)] if the latter sum is smaller. If k =n go to Step

Otherwise, go to stage k + 1.

Step 1:

Find the matrix ((al’n(i,j))) of all the lengths of the shortest routes
with one length improvement such that the sum of all these lengths is tt-:

smallest. We consider the consecutive nodes in the same order as in Step O.

- Stage 1: nt - {1} .

- Stage 2: Nz = {1,2} . Consider the improved length from node 1 to
node 2 . It is b1(1,2) . The improved length from 2 to

is b1(2,1) . Compute the two corresponding matrices:

19

1.




20

1
0 b (1,2) 0 d(1,2)
(a,2nt? -( ) (2,121 -( ) .
d(2,1) 0 b1(2,1) 0

- Stage 3: N3 = {1,2,3} . Find the shortest route from 1 to ‘3. We

have:

al'™(1,3) = min[a®"@,2) + b1(2,3) ; v1.3) ; 2l P@,2) +d(2,3)]

= min[d(1,2) + b1(2,3) ; bl(1,3) ; bL(L,2) + d(2,3)] .

Suppose the best improvement is on arc (il,j3) c (11,j3) is
either (1,2) or (2,3) . Compute the matrices corresponding
to this arc improvement. For instance, if (11,j3) is (2,3) ,

this matrix ((1,3))2’3 is computed with the arc lengths:

d(l’l) =0, ‘d(l’z) ’ d(1’3) .
d(2,1) ’ d(2’2) =0, b1(2’3)
d(3,1) , d(3,2) , d(3,3) =0 .

We do the same for the shortest routes from 2 to 3, from 3

i to 1 and from 3 to 2 . So we get the new improvements on

the aics (12,j3) . (13,j1) , and (13,12) . TFor each new
improvement, we have to compute the matrix with the distances
d(i,j) except bl(i,j) for the arc on which the improvement

h occurs. If the improvements of Stage 2 (improvement on arc

(1,2) and on arc (2,1)) belong to the set of the new improvements,
we are done. Go to Stage 4. If not, compare all the elements of
the set a1’3(1,2) with b1(1,2) . If ore of these elements

is smaller than b1(1,2) , we are done. Go to Stage 4.
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If they are all greater than b1(1,2), we have to compute
= the 3x3 matrix corresponding to the improvement on arc 1,2) .
Do the same for the shortest route from 2 to 1 .
- Stage k: We know all the (k - 1)x(k ~ 1) matrices of stage k - 1 .
Compute all the shortest routes with one improvement frcm every

-1
node 1 ¢ Nk “ to node k and from node k to every node

For 1 =1, ..., k = 1 the shortest route from i to k 1is:

al’k(i,k) = min[min out of Bl’k-l(i,j) +d(j,k) ,

%l + ol 3=1, e, k-1

k

min out of 81’ _l(i,j) means the smallest element of the set

Bl’kul(i,j) . The shortest route from k to i 1is:

al"®(k,1) = mtn[d(k,5) + min out of 81°K1(3,1) ,
1 0,k~-1
b (k,3) +a’" "(3,1)] 3=1, ..., k-1.
Compute the matrices corresponding to the new improvements. For ezch improvement,

we have a different matrix. Depending on whether an improvement was considered

or not previously the formulas to find the shortest route from i to j

(1=1, ..., k-1 and j =1, ..., k'= 1) are slightly different. For an

improvement which was never considered before the length of the shortest route is:

al %@, 1) = min[a® 51, ) , alRd k) + 2Kk, 9)] .

For an improvement which was already considered before in one or more of the

previous steps the element (1,j) of the corresponding matrix is:
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al’k(i,j) = min[al’k'l(i,j) , al’k(i,k) + al’k(k,j)]

al'k-l(i,j) is the element of the matrix at stage k - 1 corresponiing to

the same improvement we consider ncw.

If all the improvements of stage k -~ 1 belong to the set of the new
improvements, we are done. If one does not belong to this set, say the
improvement on arc (iO’jW) ,» consider the pair of nodes, say iz - jt >
for which this improvement gave the shortest distance p in stage k - 1.

If any element of the set cl’k

(iz’jt) is smaller than p, we are done.

Wg do not have to consider any more the improvement on arc (iQ’jW) . If not,
we must compute the kxk matrix corresponding to this improvement. This
comparison has only to be done after the first loop has been formed. Before

we must consider necessarily at each stage the improvemeuts of the previous

stages. If k = n go to the next step. Otherwise, go to stage k + 1 .

Step r:

Find the matrix ((ar’n(i,j))) of all the lengths of all the shortest
routes with r length improvements such that the sum of all these lengths is
the smallest.

We consider the consecutive nodes in the same order as in Step 0 and 1.
The procedure is exactly the same as in Step 1. Let us write the formulas for

Stage k:

FOI.’ illl’ ooo’k-l

r,k,

r,k-1
a * {1,k) = min[min ocut of 8’

(1,3 + 4,00,

r-bik=lig ) +bl(3,01

min out of B

j'l’ooo’k_l




o

AT e

R e

R A g I

e

L E it i

s e Lt i o e

23

ar’k(k,i) = min[d(k,j) + min out of Br’k-l(j,i) ,

r-1,k-1

bl(k,j) + min out of B 3,1)] j=1, ..., k-1

For 1’:1, oo-,k-l and J-l, ooo,k-lo

We have to consider two different cases. If the new improvement corresponding

to the matrix wecompute has never been considered before, we have:

r-1,k-1

a"’¥(1,1) = min[a 1,9) , a5, K + a" KK, 1]

ar—l’k—l(i,j) is the element of the matrix at step r - 1, stage k - 1 which

corresponds to the same improvements as the r - 1 first improvements we consider
now.
For an improvement which has already been considered in one of the previous

stages, the element ar’k(i,j) of the corresponding matrix is:

r, k-

gr’k(i,j) = min[a 1(i,j) 5 ar’k(i,k) + ar’k(k,j)

ar’k—l(i,j) is the element of the matrix at Step r, stage k - 1 which
corresponds to the same improvements we consider now.

We have to make the same comparisons as in Step 1 in order to determine
the matrices we must compute. If r = s , make the sum of the elements of the
differeunt matrices. The improvements which correspond to the matrix that gives

the smallest sum are the solution of our problem. If r <s go to step r + 1.

Conclusion:

The way the algorithm works makes the advantages of the special choices
of the consecutive nodes clearer. If by adding node k to the set Nk—1 in
passing from stage k - 1 to Stage k,we do not form any loop, only omne

improvement is added to the previous improvements. It is the improvement on the
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arc - p which joins node k to the set of the k - 1 first nodes. So the
number of matrices to be computed increases only by one unit at this stage.
But if we cfeate a loop in adding node k to the first k - 1 nodes, two
nevw imprdvements have to be considered, the first on the arc p and the second
on ‘the arc closing the loop. Hence, by this procedure the least possible number
of matrices iQ added at each stage.

For instance, in the following numerical example, we have to compute one
matrix at Stage 2, two matrices at Stage 3, three matrices at Stage 4 and six

matrices at Stage 5.

Remark:

If there is a tie in the relation (r,k) on Page 22, carry on the improvement

from stage (k - 1) and do not consider the new improvement.

Example:

(1,0)

The consecutive nodes are: 1 , 2 , 5, 3, 4
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Step 0:
. - Stage 1: N = {1}

- Stage 2: N - {1,2} . The distance matrix is

- Stage 3: N - {1,2,5} . The distance matrix is
1 2 5
1 0
L] 0
. - Stage 4: N4 = {1,2,5,3} . The distance matrix is
1 2 5 3
: 1 To 6 5
| ; 5 oo o 0 o
* 3 o o oo 0
i - Stage 5: NS = {1,2,5,3,4} . The distance matrix is
i
. 1 2 5 3 4
2 1 [o 2 6 5 79
f 2 15 0 4 3 5
; 5 T 13 0 6 1
3 18 20 24 0 8
4 L 10 12 16 15 0 -
g
3
.
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Step 1:
- Stage 1: N = {1}

- Stage 2: N - {1,2}

0 1
@a,2)b? - ]
© 0

- Stage 3: N3 = {1,2,5} . The shortest route from 1 to 5 {is

min 1+4 , 2+3 =5
improvement improvement )
on arc (1,2) omn arc (2,5)

There is a tie. Keep the improvement on (1,2) . The lergth
of the shortest route from 2 to 5 is 3 . The corresponding
improvement is on (2,5) . The distances from 5 to 1 and
from S5 to 2 remain = . The set of the new improvements is

(1,2) , (2,5) . Hence, we have to consider the two matrices:

1 2 5
1o 57
W2, a,sm%= 2= o 4J
J L= © 0
1 2 5
1 0 5
@50« 2|« 0o 3
S L= © 0

- Stage 4: NA = {1,2,5,3} . The length of the shortest route from 1 to

3 1is
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improv. improv. improv.

min( 1+3 0 2+ 2 ’ 5 =4
on (1,2) on (2,3) on (1,3))

Keep the previous improvement on arc (1,2) . The length
of the shortest route from 2 to 3 1s 2 . The improvement
is on (2,3) . The distances from 5 to 3, from 3 to 1,
from 3 to 2 and from 3 to 5 remain « . The set of the
new improvements is: (1,2) , (2,3) . The corresponding

matrices are:

1 0 1 5 4
((@,2),0,5,6,Hn"2= 2|« 0o 4 3
5 | o 0 ©
3le = =

1 ro 6 4
2,3 - 2l 0 4 2
i
3le o = o

The improvement on arc (2,5) of Stage 3 is not among the new improvements.

It was found in determining the shortest route from 2 to 5 . So we have to
compare the old distance from 2 to 5 which is equal to 3 to the elements

of 01’4(2,5) s1.e., 4 and 4 . Since the old distance is shorter than the new
ones, we have to consider the improvement on arc (2,5) and compute the

corresponding matrix.
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1 2 5 3
1 0 5 5 .
(@M% = 2= 0o 3 3
5 [ o« 0 [
3 o © o G
- Stage 5: NS = {1,2,5,3,4} . The length of the shortest route from
1 to 4 1is
min(4 +8, 5+5,5+1,6+0)=2¢6.
The corresponding improvement is on (1,2) .
The shortest distance from 2 to 4 is 4 . The improvement is on (2,3) .

The s’ ortest distance from 5 to 4 is O . The improvement is on (5,4) .
The shortest distance from 3 to 4 1is 5 . The improvement is on (3,4) .
The shortest distance from 4 to 1 1; 5 . The improvement is on (4,1) .
The shortest distance from 4 to 2 1is 7 . The improvement is on (4,1) .
The shortest distance from 4 to 5 4s 11 . The improvement is on (4,1) .
The shortest distance from 4 to 3 is 11 . The improvement is on (4,1) .

The set of the new improvements is: (1,2) , (2,3) , (5,4) , (3,4) , (4,1) .

The corresponding matrices are:

- 0 2 6 5
14 0
10 12 0 15
18 20 24 0
= 10 12 16 15

((5,4))>*" =

HW ;LN =
o o0 O & O




-0
10
4,1), (4,2, (4,5), (4,3) \\ 1
(5,1),(,2),(5,3),(3,1),

(3,2),(3,5),(2,1)

13
-5

]
F- IV B I S
[+))

- 0
15
11
18

- 10

(1,2,a,5, 1,32 =

H W Uk N -

15
11
15
~10

(3,404 =

S Lok v+

1

-0
15
11
18
- 10

(((2,3),@2,0n%3 -

Fo N VI I I

15

12
19
11

Ny

13
17
12

0

13
20
12

In all these matrices, the shortest distance from 2

greater than the distance found in improving arc

(2,5) .

19
11

23
15

21
16

24
16

5 1=

Hence, we have to

11

10

15

14

16

15

15

14

compute aiso the 5%5 matrix corresponding to this improvement.

p o) S W = U~y © 0 = U & O o = WU~

o 0 = U

This is

29
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1 2 5 3 4

- 0 2 5 5
14 0

11 13 0 16
18 20 23 0
- 10 12 15 15

(2,502 =

- BN U RV I S
o o = &~ O

Let us find the sum of all the elements of these matrices. They are in the same
order as the matrices have been written: 204, 156, 200, 199, 207, 204. The
smallest sum is 156. That corresponds to the improvement on arc (4,1) which

gives the solution to our problem.

b) Each arc can be improved m times (m > 1) . m is not necessarily

the same for each arc.
The Steps 0 and 1 are exactly the same as in Case a. Consider Step r,

Stage k. In applying the same rules as -reviously, we have the formulas:

if r<m ar’k(i,k) = min{min out of Br’k_l(i,j) +d(j,k) ,

r-1,k-1

min out of 8 (i,j) + bl(j,k) s

a5 1) +5ER] J =1, eey k-1

m is the number of possible improvements

on arc (j,k) .

ar’k(k,i) = min{d(k,j) + min out of Br'k-l(j,i) A

r-1,k-1

bl(k,j) + min out of B8 3,1 ,

bC,g) + % g, 1.1, L, k-1
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m 1s the number of possible improvements

on arc (k,j) .

if r>m ar’k(i,k) = min{min out of Br’k-l(i,j) +d(j,k) ,

min out of Br’k_l(i,j) +b57(1,K)]
j=1, ..., k-1
m 1is the number of possible improvements

on arc  (j,k) .

ar’k(k,i) = min[d (k,j) + min out of Br’k-l(j,i) P

bm(k,j) + min out of Br-m,k-l

G,1)] =1, ..., k-1

The necw improve..cats being known, now we have to compute the corresponding
matrices.
" r,k
Consider the element a ' (i,j) . Suppose that o« new improvements have

been found either on arc (j,k) or on arc (f,j) . Then ar’k(i,j) =

r-a,k-1 r r-o,k-1

min(a i, ar’k(i,k) + a ’k(k,j)] a (1,j) 1is the entry (i,3)
of the matrix at step r - ¢ , stage k - 1 which corresponds to the same
improvements as the r - o first improvements we consider now.

If no new improvement is neither on arc (k,j) nor on arc (j,k) , we have:

r,k-1

a5 K, = il ) L aT LK) + a5 RG]

-1 .
ar’k (1,j) 1is the elenent of the watrix at Step r, stage k - 1 which
corresponds to the same improvements we consider now.

In order to know the matrices we have to compute, we must make the same

comparisons as in Step 1 of Case a. If r = s stop after this step. Otherwise

go to step r + 1 .
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111.3 Applications

Consider a network of post-delivery by trains or trucks. In order to reduce -
the travel time between two cities, we can introduce a plane. Between which
cities should this plane be used such that the total delivery time is reduced
the most?
How to introduce toll on highways? Consider a communication network which
exists already or which has to be constructed. In order to pay the construction,
we want to introduce taxes on certain arcs. Suppose that an amount of a(i,j)
toll on arc (i,j) 1is equivalent for the user with an increase of B(i,j)
miles of the length of the arc (i,j) . The probler is the following: On which
arcs should the taxes be introducedsuch that the sum of all the shortest routes

is increased the least?

Different hypotheses can be made:

@) The total number of arcs on which we can introduce toll is fixed, say s .
The algorithm is the same as in Section a, but now we have to consider increases
of the lengths of the arcs instead of decreases.

B8) The total amount of taxes to be collected is fixed a priori, say M.
For instance, M may be the equivalent of a certain percentage of the sum of all
the shortest routes between each pair of nodes in the network. The algorithm is
the same as in @) , but now we stop at Step r if the sum of the r first increases
is greater or equal to M and the sum of the r - 1 first increases is less
than M .

Y) In a) and B) we minimized the sum of all the travel times between
each pair of nodes, but we did not take into account the amount of flow £(i,]j)
on each arc. Define now the travel time on each arc (i,j) as the product of

the number of cars using this arc in a certain period (for instance, in 24 hours),
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and the average travel time of a car on this arc. When the total amount of toll
is fixed a priori the algorithm is the same as in B8) but now we consider new
distance-matrices the elements of which are f(i,j) x d4(i,3) .

3) Suppose now that the travel time on each arc is a known increasing

function of the flow on this arc.

Consider first to(i,j) = travel time on arc (i,j) independent of the
flow on this arc. Solve the problem according to the previous algorithm 1Y) .
The solution provides us with a flow pattern fo(i,j) which corresponds to

a travel time tl(i,j) .

0 1
tz(i,j) EAKERS DI & ¢ PH: D) and solve according to the

Consider now 2

previous algorichm.

2 3
For the third iteration take ta(i,j) - & (1,1) ; t (1,4) .

Stop when £°(i,§) = £71(4,4) .

_—
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APP/NDIX

APPLICATION 77 THE ALGORITHM
OF SECTION II TO THE MAXIMAL FLOVW PROBLEM

1. One-commodity maximum flow problem. The equivalence between a maximum

flow problem in a primal planar graph G = (N,A) (N 1is the set of nodes j) and
the shortest route problem in its dual is well known (Ref. 1, 6, 7). To each arc
(jx,jy) in the primal corresponds an arc (ix,iy) in the dual. To a cut in the
primal corresponds a route from source to sink in the dual. To the minimal cut in
the primal (which is equal to the maximal flow) corresponds the shortest route from
source to sink in the dual.

Consider now a maximum flow problem on the graph G . Suppose that to each
arc (jx,jy) corresponds a set of nonnegative numbers c(jx,jy) . Let
co(jx,jy),cl(jx,jy), sooq cm(jx,jy) be the elements of this set with
co(jx,jy) > cl(jx,jy) > e 2 cm(jx,jy) >0 for all (jx,jy) . When the capacity
of arc (jx,jy) passes from co(jx,jy) to cu(jx,jy) with a e {1, ..., m} , we
say that the capacity of arc (jx,jy) is reduced by co(jx,jy) - cu(jx,jy) and
that the reduced capacity is ca(jx,jy) 3

Suppose s capacity-decreases can occur on the whole network. T1f an arc is
subject to only one decrease, the reduced length is cl(jx,jy) . If an arc is
subject to more than one capacity-~decrease, the successive reduced capacities are
S (e k20 a0 GGl

The sensitivity-analysis problem is the following: On which arcs should the

s improvements occur such that the maximal flow is reduced the most?

To solve this problem, we consider the improvement problem on the dual graph
G = (N,A) . To the arc (jx,jy) of G corresponds the arc (ix,iy) of G . To
the successive capacities co(jx,jy), cees cm(jx,jy) of the primal correspond the

successive arc lengths d(ix,iy), o00h bm(ix,iy) of the dual. So the sensitivity- ‘
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analysis on the primal is equivalent to the improvement problem in the dual: On

which arcs should. the s improvements occur such that the length of the shortest
path from source to sink is reduced the most? If only one capacity-decrease can

occur on each arc of the primal, we consider only one length improvement on each

arc of the dual., If m capacity-decreases can occur on each arc of the primal,

we coasider m length improvements on each arc of the dual. The solution of the
dual problem provides us with the shortest improved path from source to sink and

tells us on which arcs (1x,1y) the improvements occurred. To the shortest path
corresponds the new minimal cut in the primal and the capacity-decreases occur on
the arcs (jx,jy) which intersect the improved dual arcs.

2. Two-commcdity maximum flow nroblem, Consider an undirected network with

two sources and two sinks. The two-commodity problem consists in maximizing the

sum of the flows of two different commodities, commodity 1 being shipped from source

* = *
Sl to sink S1 and commodity 2 from S2 to S2 .

After the following adaptation, the sensitivity-analysis problem on the two-
commodity flow problem can be made in the same way as for the one-commodity problem.
T. C. Hu has shown that the maximal flow is equal to a certain minimal cut

(Ref. 4). The cut here is defined as a set of arcs separating at the same time

* *
Sl from S1 and S2 from S2 . Hence the minimal cut can be one of the two

* *
following sorts: Either it separates S, and S, from S, and S, or S, and

1 2 1 2 1
* *
S2 from S1 and S2 . Thus if we are only interested in the value of the maximum

flow (andvnot in the flow distribution on the different arcs), we can find this
value in the following way:

* *
- Condense S1 and S2 into a single node W and S1 and S2 into a

*
single node W ., In the condensed graph Sw s consider W as source and

*
W as sink., Find the minimal cut the value of which is a .

*

*
- Condense S1 and S2 into a single node Z and S1 and S2 into a single

* *
node Z . In the condensed graph Gz , consider Z as source and Z as
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sink. Find the minimal cut the value of which is B .

- Tne maximum flow for the two-commodity problem is min (a,B) .

Sensitivity-analysis. Consider the two duals Gw (corresponding to Gw) and

G, (corresponding to Gz) . Make the sensitivity-analysis on both graphs. We get
two values of the reduced maximum flow: al and Bl . Take min (al,Bl) and

keep the corresponding capacity-decreases.

Remark:

Unfortunately, this very easy method does only work in the case where the two

condensed networks are planar.

Example:




1., Put Sl and S2 together.

* *
Put S1 and S2 together,
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The dual graph is:

, ’ * -
’ LS
4 ’ ‘ 2 * ~ 4
, LY
o, ~
, ~
4 ’ 2 *
’ 2 /\_ 2 . 4
2
—~ 20)
]

2 14

. ’ 3
~ ’
~ ’
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b ’
. ’
~

sx)’
v i

8

Length of the shortest route from source to sink = value of the minimal cut in the
primal = 8,

*
Chain: (Sw’3) , (3,8) , (S’Sw) .

Minimal cut: (6',7') , (3',8") , (4',5') .
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*
2. Put Sl and 82 together,

*

4
Put Sl and 82 together.

Primal Graph Gz - —_—

Dual Graph Gz = e.eea




T ——

A7

The dual graph is:

Length of the shortest route from source to sink = minimal cut in the primal = 10.
¥
Chain: (Sz,3) y (3,6) , (6,9 , (9’52) g

Minimal cut: (3',2') , (3',6') , (7',8') , 8',2%) .

Since 8 < 10 , the minimzl cut is 6',7'y , (3',8") , %',s")

The sensitivity analysis can now be made on the two dual graphs as it has been

described in Part II.

USRI T I



A.8

3. Multi-commodity maximum flow problem for a completely planar graph.

M. Sakarovitch (Ref. 5) defines a completely planar g-aph as follows: The grapk G

is completely plianar if

(1) The graph obtained from graph G by linking a supér source to the
sources of all the commodities and linking the sinks to a super sink is
planar.

(11) The graph obtained from G by adding the arcs (Sl,SI), BB (Sn,s:)

is planar. (n 1is the number of commodities considered.)

In (5), Sakarovitch gives an algorithm to solve the multi-commodity problem
in this special case:

"Begin by sending flow from S, to S: following the general one-commodity
maximum €low algorithm., Let F~ be the quantity of flow thus sent. Define

Ql = (1) . We have: =
1 *
F = c(Sl,Sl) .

*
Then send flow from 82 to 52 using the same algorithm in the network of
remaining capacities; let Fz be the amount of flow thus sent; go on sending flow

*
from S3 to 83 in the network of remaining capacities and so on."

Sakarovitch shows that this construction leads to a maximal integer multi-

commodity flow and to the determination of a partition h for which

Fl+...+F= ) c(S ,s*).
Qieh Qi Qi

For an n-commodity problem there exist 2“-1 partitions hi . To each

partition hi corresponds the cut Hi c




A.9

The sensitivity-analysis can be done in the same way as for the 2-commodity

case,

Consider the Bn-l possible partitions hi’Ai and B1 being the elements of

the partition h1 . Condense the elements of A1 in a unique source and those of
Bi in a unique sink. To the new graph G1 » corresponds the dual graph Gi g
Find the shortest route from source to sink on G1 (length = ai) which provides us

with the cut Hi . Min (ai) is the value of the maximal flow and the

corresponding cut Hi is the minimal cut.

The sensitivity-analysis is done on the Zn-l dual graphs G1 each of which

provides us with a final shortest route the length of which is B8 Take

i
min (Bi) and the corresponding capacity-decreases solve the problem,

i — -

s N ——
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